Aggregation in Swarm Robotic Systems: Evolution and Probabilistic Control
نویسندگان
چکیده
In this study we investigate two approachees for aggregation behavior in swarm robotics systems: Evolutionary methods and probabilistic control. In first part, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron controllers that are evolved for a simulated swarm robotic system are systematically studied with different parameter settings. Using a cluster of computers to run simulations in parallel, four experiments are conducted varying some of the parameters. Rules of thumb are derived, which can be of guidance to the use of evolutionary methods to generate other swarm robotic behaviors as well. In the second part a systematic analysis of probabilistic aggregation strategies in swarm robotic systems is presented. A generic aggregation behavior is proposed as a combination of four basic behaviors: obstacle avoidance, approach, repel, and wait. The latter three basic behaviors are combined using a three-state finite state machine with two probabilistic transitions among them. Two different metrics were used to compare performance of strategies. Through systematic experiments, how the aggregation performance, as measured by these two metrics, change 1) with transition probabilities, 2) with number of simulation steps, and 3) with arena size, is studied. We then discuss these two approaches for the aggregation problem.
منابع مشابه
A Macroscopic Model for Probabilistic Aggregation in Swarm Robotic Systems
We study the self-organized aggregation of a swarm of robots in a closed arena. We assume that the perceptual range of the robots are smaller than the size of the arena and the robots do not have information on the size of the swarm of the size of the arena. Using a probabilistic generic aggregation behavior model inspired from studies of social insects, we propose a macroscopic model for predi...
متن کاملEvolving Aggregation Behaviors in a Swarm of Robots
In this paper, we study aggregation in a swarm of simple robots, called s-bots, having the capability to self-organize and selfassemble to form a robotic system, called a swarm-bot. The aggregation process, observed in many biological systems, is of fundamental importance since it is the prerequisite for other forms of cooperation that involve self-organization and self-assembling. We consider ...
متن کاملEvolving Aggregation Behaviors for Swarm Robotic Systems
EVOLVING AGGREGATION BEHAVIORS FOR SWARM ROBOTIC SYSTEMS: A SYSTEMATIC CASE STUDY
متن کاملA Review of Probabilistic Macroscopic Models for Swarm Robotic Systems
In this paper, we review methods used for macroscopic modeling and analyzing collective behavior of swarm robotic systems. Although the behavior of an individual robot in a swarm is often characterized by an important stochastic component, the collective behavior of swarms is statistically predictable and has often a simple probabilistic description. Indeed, we show that a class of mathematical...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007